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a b s t r a c t

Although inflammation has long been known as a localized protective reaction of tissue to

irritation, injury, or infection, characterized by pain, redness, swelling, and sometimes loss

of function, there has been a new realization about its role in a wide variety of diseases,

including cancer. While acute inflammation is a part of the defense response, chronic

inflammation can lead to cancer, diabetes, cardiovascular, pulmonary, and neurological

diseases. Several pro-inflammatory gene products have been identified that mediate a

critical role in suppression of apoptosis, proliferation, angiogenesis, invasion, and metas-

tasis. Among these gene products are TNF and members of its superfamily, IL-1a, IL-1b, IL-6,

IL-8, IL-18, chemokines, MMP-9, VEGF, COX-2, and 5-LOX. The expression of all these genes

are mainly regulated by the transcription factor NF-kB, which is constitutively active in most

tumors and is induced by carcinogens (such as cigarette smoke), tumor promoters, carci-

nogenic viral proteins (HIV-tat, HIV-nef, HIV-vpr, KHSV, EBV-LMP1, HTLV1-tax, HPV, HCV,

and HBV), chemotherapeutic agents, and g-irradiation. These observations imply that anti-

inflammatory agents that suppress NF-kB or NF-kB-regulated products should have a

potential in both the prevention and treatment of cancer. The current review describes

in detail the critical link between inflammation and cancer.
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MAPK, mitogen-activated protein

kinase

MMP, matrix metalloproteinase

NF-kB, nuclear factor-kB

PPAR-g, peroxisome proliferator

activated receptors

RCC, renal cell carcinoma

TGFa, transforming growth factor

TNF-a, tumor necrosis factor

VCAM-1, vascular cell adhesion

molecule 1

VEGF, vascular endothelial growth

factor
1. Introduction

Common wisdom says ‘‘most things in life are a double-edged

sword’’. While they are in our favor at one dose or under one

condition; they may be disfavor at another dose or under

another condition.This is analogoustowhat AlexanderFleming

(discoverer of penicillin) once said: if the soil causes the disease;

the cure to the disease also lies in it. For instance, while TNF

mediates rheumatoid arthritis, the soluble form of its receptor

(enbrel) is used for its treatment. Similarly, while T helper (Th)-1

secreted cytokines mediate inflammation, Th-2 produced

cytokines suppress it. Also it is noted that while pro-oxidants

produced in the body mediate inflammation, antioxidants

(such as glutathione) suppress this response. Inflammation is a

part of the host response to either internal or external

environmental stimuli. This response serves to counteract

the insult incurred by these stimuli to the host. This response

can be pyrogenic, as indicated by fever. When acute inflamma-
Fig. 1 – Different faces of inflammati
tion or fever is manifested for a short period of time, it has a

therapeutic consequence. However, when inflammation

becomes chronic or lasts too long, it can prove harmful and

may lead to disease. How is inflammation diagnosed and its

biomarkers is not fully understood, however, the role of pro-

inflammatory cytokines, chemokines, adhesion molecules and

inflammatory enzymes have been linked with chronic inflam-

mation (Fig. 1). Chronic inflammation has been found to

mediate a wide variety of diseases, including cardiovascular

diseases, cancer, diabetes, arthritis, Alzheimer’s disease,

pulmonary diseases, and autoimmune diseases [1]. The current

review, however, will be restricted to the role of chronic

inflammation in cancer. Chronic inflammation has been linked

to various steps involved in tumorigenesis, including cellular

transformation, promotion, survival, proliferation, invasion,

angiogenesis, and metastasis [2,3]. That inflammation is a risk

factor for most type of cancers is now well recognized (Table 1;

[4–16]). The present review will discuss the various inflamma-
on and its role in tumorigenesis.
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Table 1 – Inflammation as a risk factor for most cancers

Inducer Inflammation Cancers % Predisposed that
progress to cancer

References

Tobacco smoke Bronchitis Lung cancer 11–24 [4]

Helicobacter pylori Gastritis Gastric cancer 1–3 [5]

Human papillomavirus Cervicitis Cervical cancer <1 [6]

Hepatitis B & C virus Hepatitis HCC 10 [7]

Bacteria, GBS Cholecystitis Gall bladder cancer 1–2% [8]

Gram-uropathogens Cystitis Bladder cancer <1 [9]

Tobacco, genetics Pancreatitis Pancreatic cancer �10% [10]

GA, alcohol, tobacco Esophagitis Esophageal cancer 15 [11]

Asbestos fibers Asbestosis Mesothelioma 10–15 [12]

Epstein-Barr virus Mononucleosis Burkitt’s lymphoma <1 [13]

Hodgkin’s disease

Gut pathogens IBD Colorectal cancer 1 [14]

Ultraviolet light Sunburn Melanoma �9% [15]

Infections, STD PIA Prostate cancer ? [16]

GA, gastric acid; GBS, gall bladder stones; HCC, hepatocellular carcinoma; STD, sexually transmitted diseases; PIA, prostate inflammatory

atrophy.
tory intermediates responsible for the steps leading to forma-

tion of tumors, their growth and metastasis.
Table 2 – TNF as an autocrine and paracrine growth
factor

Autocrine growth factor

Chronic B cell malignancies [175–178]

Chronic myeloid leukemia (CML) [28]

B cells-chronic lymphocytic leukemia (CLL) [22,39]

Hairy cell leukemia [178]

Juvenile chronic myelogenous leukemia [179]

B cells from ALL, MDS, AML patients [27]

Macrophage differentiation [180]

B-lymphoblastoid cells [181]

Acute myelogenous leukemia (AML) [29]

Neuroblastoma (SKNF-1 & SKNBE) [38]

Ovarian tumor cells [33]

Mantle cell lymphoma [182]

Cutaneous T cell lymphoma [24]

Glioblastoma [183]

Skin fibroma [184]

Paracrine growth factor

Fibroblasts [185]

Astrocytes [186]

Thymocytes [187]

Hairy cell leukemia (HCL) [188,189]

B-cell chronic lymphocytic leukemia (B-CLL) [190]

Normal B cells [191]

Megakaryblastic leukemia (CMK) [192]

Clonogenic cells (AML) [193]

Promyelomonocytic leukemia (HL-60) [194]

Acute myeloblastic leukemia [195,196]

Astrocytoma (U-373) [197]
2. Role of tumor necrosis factor in
tumorigenesis

Tumor necrosis factor (TNF-a) was first isolated as an

anticancer cytokine by our group more than two decades

ago [17]. Experience since then has indicated that when

expressed locally by the cells of the immune system, TNF-a

has a therapeutic role. However, when dysregulated and

secreted in the circulation, TNF-a can mediate a wide variety

of diseases, including cancer [17]. TNF-a has itself been shown

to be one of the major mediators of inflammation [18]. Induced

by a wide range of pathogenic stimuli, TNF-a induces other

inflammatory mediators and proteases that orchestrate

inflammatory responses. TNF-a is also produced by tumors

and can act as an endogenous tumor promoter [18]. The role of

TNF-a has been linked to all steps involved in tumorigenesis,

including cellular transformation, promotion, survival, pro-

liferation, invasion, angiogenesis, and metastasis, as outlined

below (Fig. 2).

2.1. TNF-a can induce cellular transformation

A number of reports indicate that TNF-a induces cellular

transformation, proliferation, and tumor promotion [2,18–20].

Komori’s group reported that human TNF-a is 1000 times more

effective than the chemical tumor promoters okadaic acid and

12-O-tetradecanoylphorbol-13-acetate in inducing cancer [21].

They further found that TNF-a substantially enhanced cellular

transformation initiated with 3-methylcholanthrene in fibro-

blasts. Moreover, TNF-a induced growth of v-Ha-ras trans-

fected but not of non-transfected cells. Okadaic acid itself

induced the secretion of TNF-a from fibroblasts cells, thus

suggesting that the chemical tumor promoters could also

induce the secretion of TNF-a, which in turn can act as an

endogenous tumor promoter in vivo [21].
2.2. Tumor cells produce TNF-a and mediate proliferation

Although initially thought to be a product only of macrophages,

TNF-a has now been shown to be produced by a wide variety of

tumor cells, including those of B cell lymphoma [22,23],

cutaneous T cell lymphoma [24], megakaryoblastic leukemia

[25], adult T cell leukemia [26], AML [27], CLL [28], ALL [29], breast

carcinoma [30], colon carcinoma, lung carcinoma, squamous

cell carcinoma, pancreatic cancer [31,32], ovarian carcinoma
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[33–35], the cervical epithelial ovarian cancer [36], glioblastoma

[37],andneuroblastoma[38]. Inmostof thesecells,TNF-a actsas

an autocrine growth factor however; in some cell types TNF-a

induces the expression of other growth factors, which mediate

proliferation of tumors (Table 2). For instance, in cervical cells

TNF-a induces amphiregulin,which induces the proliferation of

cells [36], whereas in pancreatic cells TNF-a induces the

expression of epidermal growth factor receptor (EGFR) and

transforming growth factor (TGF-a), which mediates prolifera-

tion [32]. TNF-mediated down-regulation of ERBB2 in pancreatic

tumor cells is accompanied by an increase in growth inhibition

at lowdosesofTNF.ThisdecreaseofERBB2isasingularexample

of a modulation of this growth factor receptor by TNF-a and

representsa striking model of cytokine receptor transregulation

in the growth control of malignant pancreatic epithelial cells

[31]. Schmiegel and coworkers reported that TNF-a induced the

expression of TGF-a and EGFRin human pancreatic cancer cells.

Thesimultaneousinductionofaligand/receptorsystembyTNF-

a suggests that this cytokine modulates autocrine growth-

regulatory pathways in pancreatic cancer cells [32]. Both IL-1a

and TNF-a stimulate proliferation of immortal and malignant

cervical epithelial cells by an EGF receptor-dependent pathway

requiring autocrine stimulation by amphiregulin [36].

TNF-a is frequently detected in human tumors and asso-

ciated with a poor prognosis, loss of hormone responsiveness,

and cachexia/asthenia. An interesting link between TNF-a and

malignancy has been identified in human ovarian carcinoma.

ThegeneforTNF-awasfoundtobeexpressedin45of63biopsies

ofhumanepithelialovariancancer [35].TNF-a mRNAwasfound

in epithelial tumor cells and infiltrating macrophages, whereas

TNF-a protein localized primarily to a subpopulation of

macrophages within and in close proximity to tumor areas.

The coexpression of TNF-a and its receptor in ovarian cancer

biopsies suggests the capacity for autocrine/paracrine action.

TNF-a is also constitutively produced by B-cell chronic lym-

phocytic leukemia (B-CLL) and hairy cell leukemia (HCL) cells

and may play a regulatory role in the progression of the

neoplastic clone in B-cell chronic lymphoproliferative disorders
Fig. 2 – Inflammatory ne
[39]. Tsukasaki’s group found that TNF-a polymorphism is

associated with increased susceptibility to development of ATL/

lymphoma in human T-lymphotropic virus type 1 (HTLV-1)

carriers [26]. Genetic polymorphism leading to increased TNF-a

production may enhance susceptibility to ATL among HTLV-1

carriers.

2.3. TNF-a can induce invasion and angiogenesis of tumor
cells

Although loss of cell–cell adhesion and gain of invasive

properties play a crucial role in malignant progression of

epithelial tumors, the molecular signals that trigger these

processes have not been fully elucidated. TNF-a has been

shown to confer an invasive, transformed phenotype on

mammary epithelial cells [30]. TNFa has been reported to

induce angiogenic factor upregulation in malignant glioma

cells [40]. This upregulation in turn promotes angiogenesis

and tumor progression. There is a marked upregulation (RNA

and protein) of TNF-a, IL-8, and, to a lesser extent, vascular

endothelial growth factor (VEGF) in U251 glioma cells after

stimulation with TNF-a. TNF-a stimulates epithelial tumor cell

motility, which is a critical function in embryonic develop-

ment, tissue repair, and tumor invasion [41]. TNF-a could

enhance invasiveness of some carcinomas or stimulate

epithelial wound healing in vivo [42]. TNF-a has been even

reported to mediate macrophage-induced angiogenesis [43].

The angiogenic activity produced by activated murine perito-

neal macrophages is completely neutralized by a polyclonal

antibody to TNF-a, suggesting that immunological features

are common to TNF-a and the protein responsible for

macrophage-derived angiogenic activity.

2.4. Role of TNF-a and its receptor in cancer development

The role of both TNF-a and its receptors has been examined in

cancer development. Various approaches, including genetic

deletion, transgenic models, and the use of antibodies and
tworking in cancer.
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soluble receptors as decoys, have been used to gain insight into

the role of TNF in tumor development. TNF receptor (TNFR-1)-

mediated signaling is required for skin cancer development

induced by NF-kB inhibition [44]. This suggests a critical role of

local TNFR1-mediated signaling and associated inflammatory

response cooperating with repressed keratinocyte NF-kB sig-

naling in driving skin cancer development. An essential role of

TNFR p55 has been found in the liver metastasis of intrasplenic

administration of colon 26 cells [45]. TNFR p55-mediated signals

can upregulate both VCAM-1 expression in the liver and

subsequent liver metastasis after intrasplenic tumor injection.

Moreover, TNF-a�/� and TNFR1�/� mice are resistant to

chemically induced carcinogenesis of the skin [46], and

development of liver metastasis in experimental colon cancer

[47].TNF-adrivesalymphoproliferativedisorder inFasL�/�mice

[48],andinhibitionofstromalcellTNF-adecreasestheincidence

of inflammation-induced liver tumors [49]. Interestingly, endo-

genous and exogenous TNF-a administration showed enhance-

ment of metastasis in an experimental fibrosarcoma metastasis

model [50]. Mice injected with fibrosarcoma cells showed

enhanced metastasis to the lungs in the presence of exogenous

TNF. Neutralization of endogenous tumor-induced TNF led to a

significant decrease of the number of pulmonary metastases.
3. Role of interleukins in tumorigenesis

Several inflammatory interleukins have been linked with

tumorigenesis, which suggests that inflammation is asso-
Table 3 – Role of inflammatory interleukins and chemokines i

Cancer Interleukines and chemokine

Cervical carcinoma IL-1a and TNF

Fibroblasts IL-1a and TNF

Pancreatic carcinoma IL-1a

Lung carcinoma IL-1a

Pancreatic carcinoma IL-1b

Lung carcinoma IL-1b

NHL IL-2, IL-6, TNF

Bladder cancer IL-6

Multiple myeloma IL-6

RCC IL-6

Colorectal cancer IL-6 polymorphism

Melanoma IL-8

Prostate cancer IL-8 polymorphism

Gastric cardia carcinoma IL-8 polymorphism

Glioblastoma IL-8

Ovarian tumors IL-8

Tumor IL-8

Melanoma IL-18

LGL leukemia RANTES, MIP-1b & IL-18

Breast cancer CXCR4, CCR7

Melanoma CXCR4, CCR7, CCR10

Ovarian carcinoma CXCR4/CXCL12

RCC CCR3

Pancreatic carcinoma MIP-3a, CCR6

Ovarian carcinoma CXCR4, SDF1

Prostate carcinoma CXCL14

NHL, non-Hodgkin’s lymphoma; RCC, renal cell carcinoma; LGL, large gr
ciated with cancer development (Table 3). These interleukins

include IL-1, IL-6, IL-8, and IL-18. Interleukins mediate

different steps in the pathway leading to tumorigenesis.

Secretion of IL-1a promotes growth of cervical carcinoma [36]

and can also induce anchorage independence in embryo

fibroblasts and tumor cell revertants [51]. Autocrine produc-

tion of interleukin IL-1b promotes growth and confers

chemoresistance in pancreatic carcinoma cell lines [52]. High

levels of IL-1b have been identified as a key mediator of this

activation in two of the chemoresistant pancreatic cell lines.

IL-1b secretion into the tumor milieu also induces several

angiogenic factors from tumor and stromal cells that

promotes tumor growth through hyperneovascularization in

lung carcinoma growth in vivo [53]. IL-6 acts as a paracrine

growth factor for multiple myeloma, non-Hodgkin’s lym-

phoma, bladder cancer, colorectal cancer, and renal cell

carcinoma (RCC) [54–58]. Autocrine IL-6 production in RCC has

been linked with the involvement of p53. RCC cell lines

containing mutant p53 produced higher levels of IL-6 than

those containing wild-type p53 [58].

Another important pro-inflammatory cytokine IL-8 has

been reported to promote growth and metastasis of wide

variety of tumors. Expression of IL-8 by human melanoma

cells and human ovarian cancer cells correlates with their

metastatic potential [59–61]. IL-8 has been detected in

astrocytomas, anaplastic astrocytomas, glioblastomas, and

central nervous system cervical carcinoma metastasis. Thus,

IL-8 secretion could be a key factor involved in the determina-

tion of the lymphoid infiltrates observed in brain tumors and
n tumorigenesis

s Mechanism(s) References

Growth [36]

Anchorage independence [51]

Metastasis [198]

Angiogenesis [199]

Chemoresistance [52]

Growth [53]

Autocrine growth [55]

Transformation [56]

Proliferation [54]

Autocrine growth [58]

Increased risk [57]

Tumor growth [59,60]

Angiogenesis [200]

Higher risk [63]

Lymphoid infiltration [62]

Disease progression [201]

Growth, angiogenesis [64]

Metastasis [202]

Risk [65]

Metastasis [68]

Metastasis [68]

Invasion and growth [61]

Higher risk [73]

Cell invasion [74]

Proliferation [72]

Inhibits tumor growth [75]

anular lymphocytes.
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the development of cerebrospinal fluid pleocytosis in persons

with meningoencephalitides [62]. Polymorphisms in the IL-8

gene contributes to a high risk of gastric cardia adenocarci-

noma (GCC) and esophageal squamous cell carcinoma (ESCC)

among the population of Linxian in north-central China [63].

IL-8 has been found to be transcriptional target of Ras

signaling. Ras-dependent IL-8 secretion was required for the

initiation of tumor-associated inflammation and neovascu-

larization [64]. Constitutive production of IL-18, RANTES, and

MIP-1b, has been linked to disease progression in large

granular lymphocyte (LGL) leukemia [65].
4. Role of chemokines in tumorigenesis

Chemokines are a family of proteins that have pleiotropic

biological effects. Chemokines can play several roles in cancer

progression, including angiogenesis, inflammation, cell

recruitment, and migration, and have a well-known role in

regulating the recruitment and trafficking of leukocytes to

sites of inflammation. Chemokines are grouped into four

classes based on the positions of key cysteine residues: C, CC,

CXC, and CX3C. The stimulation of angiogenesis and tumor

growth – directly or indirectly through the recruitment of

tumor-associated macrophages – are typical situations in

which chemokines promote tumor development. On the other

hand, chemokines could be used to the benefit of cancer

patients, as they act in the recruitment of dendritic cells (DC)

or/and effector cells or for their angiostatic properties.

However, chemokine-mediated recruitment of immature DC

within tumors, due to factors produced by the tumor milieu,

could lead to the induction of immune tolerance, and

therefore novel strategies to eradicate tumors based on

chemokines should attempt to avoid this risk [66].

Evidence from murine models and human tumours

suggests that CC chemokines are major determinants of

macrophage and lymphocyte infiltration in melanoma, carci-

noma of the ovary, breast, and cervix, and in sarcomas and

gliomas [67]. Chemokine receptors CXCR4 and CCR7 are highly

expressed in human breast cancer cells, malignant breast

tumors, and metastasis [68]. Their respective ligands CXCL12/

SDF-1a and CCL21/6Ckine exhibit peak levels of expression in

organs representing the first destinations of breast cancer

metastasis. In breast cancer cells, signaling through CXCR4 or

CCR7 mediates actin polymerization and pseudopodia forma-

tion and subsequently induces chemotactic and invasive

responses. In vivo, neutralizing the interactions of CXCL12/

CXCR4 significantly impairs metastasis of breast cancer cells

to regional lymph nodes and lung. Malignant melanoma,

which has a metastatic pattern similar to that of breast cancer

but also a high incidence of skin metastases, shows high

expression levels of CCR10 in addition to CXCR4 and CCR7.

Thus chemokines and their receptors have a critical role in

determining the metastatic destination of tumor cells.

Melanoma growth stimulatory activity/growth-regulated

protein (MGSA/GRO), a CXC chemokine, plays an important

role in inflammation, wound healing, growth regulation,

angiogenesis, and tumorigenesis. Constitutive expression of

MGSA/GROa in melanoma tumors is associated with consti-

tutive NF-kB activity. Exogenous addition or continuous
expression of MGSA/GROa in immortalized melanocytes

enhances NF-kB activation [69]. Ovarian cancers express

CXCR4 chemokine receptors [70]. CXCR4 ligand, CXCL12

(stromal cell-derived factor 1), was expressed in ovarian

cancer cell line IGROV [71]. The chemokine CXCL12 may have

multiple biological effects in ovarian cancer, stimulating cell

migration and invasion through extracellular matrix, as well

as DNA synthesis and establishment of a cytokine network in

situations that are suboptimal for tumor cell growth. CXCR4

activation also induced EGFR transactivation in an ovarian

cancer cell line [72]. It has been demonstrated that CXCR4 and

SDF-1 induces proliferation in ovarian cancer cells, and this

correlated with epidermal growth factor (EGF) receptor

transactivation.

The functional chemokine receptor CCR3 has been shown

to be upregulated in human RCC [73]. Mip-3a and its receptor,

CCR6, promote pancreatic cancer cell invasion [74]. Co-

localization of Mip-3a and its CCR6 receptor promotes

pancreatic cancer cell invasion of type IV collagen. Recent

studies suggest that inflammatory processes may be involved

in the development or progression of prostate cancer. CXCL14

(BRAK) RNA expression has been observed in normal and

tumor prostate epithelium and focally in stromal cells

adjacent to cancer [75].
5. Overexpression of cyclooxygenases can
mediate tumorigenesis

Cyclooxygenase (COX)-2, an inducible enzyme with expres-

sion regulated by NF-kB, mediates tumorigenesis. COX-2, the

inducible isoform of prostaglandin H synthase, has been

implicated in the growth and progression of a variety of

human cancers. Recent epidemiologic studies have shown a

40–50% reduction in mortality from colorectal cancer in

individuals who take nonsteroidal anti-inflammatory drugs

on a regular basis compared with those not taking these

agents. One property shared by all of these drugs is their ability

to inhibit COX, a key enzyme in the conversion of arachidonic

acid to prostaglandins. Enhanced COX-2 expression has been

found in colon cancer tissues from subjects with clinically

diagnosed colorectal cancer [76–78]. Cyclooxygenase regulates

colon carcinoma-induced angiogenesis by two mechanisms:

COX-2 can modulate production of angiogenic factors by colon

cancer cells, while COX-1 regulates angiogenesis in endothe-

lial cells. It has been also reported that COX-2 and mPGES were

induced in the COX-1-expressing fibroblasts in human familial

adenomatous polyposis polyps [79,80].

COX-2 expression in human tumors can be induced by

various growth factors, cytokines, oncogenes, and other

factors. IL-1b has been reported to upregulate COX-2 expres-

sion in human colorectal cancer cells via multiple signaling

pathways [81]. Treatment of HT-29 cells with IL-1b induced

expression of COX-2 mRNA and protein, and inhibitors of the

ERK 1/2, JNK, P38 MAPK, and NF-kB signaling pathways,

blocked the ability of IL-1b to induce COX-2 mRNA. COX-2

overexpression reduces apoptotic susceptibility by inhibiting

the cytochrome c-dependent apoptotic pathway in human

colon cancer cells [82]. Paradoxically, COX-2 overexpression

can also inhibit death receptor 5 expression and confers
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resistance to TRAIL-induced apoptosis in human colon cancer

cells [83].

COX-2 is expressed at an intermediate or high level in

epithelial cells of invasive breast cancers [84]. Expression of

COX-2 in breast cancer correlates with poor prognosis, and

COX-2 enzyme inhibitors reduce breast cancer incidence in

humans. COX-2 overexpression has been also found in the

mammary gland of transgenic mice induced mammary cancer

[85]. COX-2 also plays an important role in the progression of

human lung adenocarcinoma [86]. COX-2 overexpression also

leads to enhanced in vitro expression of both CXC ligand CXCL

8 and CXCL5 NSCLC angiogenic peptides, in the NSCLC cell

lines [87]. COX-2 mRNA has been found to be nearly 150-fold

greater in patients with HNSCC compared with normal oral

mucosa from healthy volunteers [88]. COX-1 expression in all

carcinoma tissues was associated with enhanced expression

of COX-2 RNA and protein [89].

COX-2 and iNOS expression has been observed in human

ovarian tumors and in tumor-associated macrophages [90].

COX-2 expression levels in tumor specimens from patients

with low- and high-grade astrocytomas indicated a correlation

between the percentage of COX-2 expression and patient

survival [91]. These findings indicate that high COX-2 expres-

sion in tumor cells is associated with clinically more

aggressive gliomas and is a strong predictor of poor survival.

Subbarayan et al. compared and contrasted the expression

levels and subcellular distribution patterns of COX-1 and COX-

2 in normal prostate (prostate epithelial cell (PrEC), prostate

smooth muscle (PrSM), and prostate stromal (PrSt)) primary

cell cultures and prostatic carcinoma cell lines (PC-3, LNCaP,

and DU145). The basal COX-2 mRNA and protein levels were

high in normal PrEC and low in tumor cells, unlike many other

normal cells and tumor cells. They concluded that COX-2

expression may be important to PrEC cell function. Although it

is low in stromal and tumor cells, COX-2 expression is induced

by TNF-in these cells, and this responsiveness may play an

important role in prostate cancer progression [92].

COX-2 is also expressed in 93% of melanomas, with a

moderate to strong expression in 68% [93]. Increased expres-

sion of COX-2 plays a functional role in the development and

progression of malignant epithelial cancers. [94]. COX-2

appears to play an important role in gastrointestinal as well

as pancreatic carcinogenesis, and COX-2 overexpression has

been demonstrated both in esophageal adenocarcinomas and

in the metaplastic epithelium of Barrett’s esophagus. It has

been reported that inhibition of COX-2 suppresses growth and

induces apoptosis in human esophageal adenocarcinoma cells

[95]. COX-2 expression has been reported in 91% of the

squamous cell carcinomas (SCCs) and in 78% of the esophageal

adenocarcinomas (ADCs) [96]. It has also been found that both

COX isoforms may be involved in the pathogenesis of

esophageal adenocarcinoma, as they are linked to the

expression of important modulators of angiogenesis (VEGF-

A) and lymphangiogenesis (VEGF-C) [97]. COX-2 mRNA and

protein expression has been found in 9 of 10 cases of

adenocarcinoma of the pancreas but not in nontumorous

pancreatic tissue [98]. Human gastric adenocarcinoma tissues

also contain significantly higher levels of COX-2 mRNA as

compared with paired gastric mucosal specimens devoid of

cancer cells [99]. COX-inhibiting drugs have antitumor activity
in canine and rodent models of urinary bladder cancer. COX-2

expression was not found in normal urinary bladder samples

but was detected in (86%) of invasive transitional cell

carcinomas of the urinary bladder and in 75% of cases of

carcinoma in situ [100]. These results indicate that COX-2 may

play a role in bladder cancer in humans.
6. Overexpression of lipoxygenase mediates
tumorigenesis

5-Lipoxygenase (5-LOX) is a key enzyme in the metabolism of

arachidonic acid to leukotrienes. Several studies suggest that

there is a link between 5-LOX and carcinogenesis in humans

and animals. In addition to the important role of leukotrienes

as mediators in allergy and inflammation, these compounds

are also linked to pathophysiological events in the brain,

including cerebral ischemia, brain edema, and increased

permeability of the blood-brain barrier in brain tumors.

Abundance of the mRNA for arachidonate 5-LOX, which is

the rate-limiting enzyme in leukotriene synthesis, has been

investigated in a series of human brain tumors. 5-LOX

transcript is expressed in human brain tumors and 5-LOX

gene product may play a role in human tumor-induced brain

edemas [101].

The arachidonic acid-metabolizing enzymes COX-2 and 5-

LOX are also overexpressed during the process of colonic

adenoma formation promoted by cigarette smoke. Ye et al.

investigated whether there exists a relationship between COX-

2 and 5-LOX and whether dual inhibition of COX-2 and 5-LOX

has an anticarcinogenic effect in the colonic tumorigenesis

promoted by cigarette smoke. It has been found that

pretreatment of colon cancer cells with cigarette smoke

extract promoted colon cancer growth in the nude mouse

xenograft model and inhibition of COX-2 or 5-LOX reduced the

tumor size [102]. They further found that exposure to the

mainstream smoke of unfiltered cigarettes enhanced the 5-

LOX protein expression in the inflammation-associated

colonic adenomas [103]. Such expression was accompanied

by an upregulation of MMP-2 and VEGF, the key angiogenic

factors for tumorigenesis. 5-LOX inhibitors decreased the

incidence of colonic adenoma formation and reduced angio-

genesis, MMP-2 activity, and VEGF protein expression in the

colons of these animals. Overexpression of 15-lipoxygenase-1

(15-LOX-1) in human prostate cancer cells has been reported to

increase tumorigenesis [104].

Moreover, inhibitors of 5-LOX (MK-886) have been

reported to prevent NNK-induced formation of tumors

[105]. Possible mechanisms of action of these inhibitors

include inhibition of tumor growth and lipoxygenase-

mediated activation of NNK. 1-([5-(3-methoxy-4-ethoxy

carbonyloxyphenyl)-2,4-pentadienoyl]aminoethyl)-4-diphe-

nylmethoxypiperidine (TMK688) is a potent and orally active

5-lipoxygenase inhibitor having anti-histamine activity in its

moiety. TMK688 inhibits epidermal cyclooxygenase activity

with potency similar to its inhibiting 5-lipoxygenase. Oral

administration of TMK688 inhibited two-stage skin carcino-

genesis as well as complete skin carcinogenesis [106]. Thus

anti-tumor promoting action of TMK688 may most probably

be related to its anti-lipoxygenase activity.
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Table 4 – Role of inflammatory enzymes, COX2, LOX and
MMPs in tumorigenesis

Tumor Enzyme References

Breast cancer COX-2 [84,85,203]

Cervical carcinoma COX-1 [89]

Ovarian tumors COX-2, iNOS [90,204]

Glioma COX-2 [91]

Prostate cancer COX-2 [92]

Melanoma COX-2 [93,94]

Esophageal adenocarcinoma COX-2 [95]

Esophageal SCC and AC COX-2 [96]

Urinary bladder COX-1, COX-2 [100]

Pancreatic carcinoma COX-2 [98]

Head and neck SCC COX-2 [88,205]

Lung carcinoma COX-2 [86,87]

Gastric carcinoma COX-2 [99]

Colorectal cancer COX-2 [76,77,80,82,83]

Brain tumors 5-LOX [101]

Colon cancer COX-2, 5-LOX [103]

Prostate cancer 15-LOX1 [104]

Skin cancer 5-LOX [106]

Skin cancer MMP-9 [108]

Breast cancer MMP-1, MMP-9 [109,110]

Colon cancer MMP-7 [111]
7. Role of matrix metalloproteinases (MMPs)
in tumorigenesis

Matrix metalloproteinases (MMPs) are key modulators of many

biological processes during pathophysiological events, such as

skeletal formation, angiogenesis, cellular migration, inflamma-

tion, wound healing, and cancer [107]. MMP-9/gelatinase B is

upregulated in angiogenic dysplasias and invasive cancers of

the epidermis in a mouse model of multi-stage tumorigenesis

elicited by HPV16 oncogenes. MMP-9 supplied by bone marrow-

derived cells contributes to skin carcinogenesis [108]. In tumors,

MMP-9 expression has been attributed to infiltrating inflam-

matory cells. Transgenic mice lacking MMP-9 show reduced

keratinocyte hyperproliferation at all neoplastic stages and a

decreased incidence of invasive tumors. Carcinomas that arise

in the absence of MMP-9 exhibit a greater loss of keratinocyte

differentiation, indicative of a more aggressive and higher-

grade tumor. In gene expression profiles associated with poor

outcome of patients with breast tumors, 2 of the 70 genes

identified were found to be MMP-1 and MMP-9 [109]. In a recent

study, patient survival, gene overexpression and RNAi valida-

tion data showed that MMP-1 is the second most important

gene in a 95-gene expression profile in determining the

metastatic potential of breast cancer to produce lung metas-

tases [110]. MMP-7 also promotes cancer invasion by proteolytic

cleavage of the extracellular matrix substrates and activates

other MMPs, such as proMMP-2 and proMMP-9, to facilitate

tumor invasion [111]. A role of COX-2, 5-LOX, and MMPs in

tumorigenesis is summarized in (Table 4).
8. Role of hypoxia-inducible factor-1 in
inflammation

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric tran-

scriptional complex composed of an alpha subunit and a beta
subunit. The HIF-1a subunit is generally unstable and under-

goes proteasomal degradation in normoxia, whereas the b

subunit is permanently present in nuclei irrespective of the

state of oxygenation [112]. Recent studies have shown that a

number of peptidic and nonpeptidic mediators of inflamma-

tion can activate HIF-1 even under normoxic conditions [113].

These include cytokines, hormones such as insulin or IGF-1

and IGF-2, and vasoactive peptides, such as angiotensin II

[114]. Among cytokines IL-1b and TNF-a were first shown to

increase HIF-1a activity in the human hepatoma cell line

HepG2 [115]. HIF-1a stimulates the expression of several genes

encoding proteins that promote inflammatory reactions.

These include erythropoietin, vascular endothelial growth

factor (VEGF) and VEGF-receptor, iNOS, COX-2, glucose

transporters, and a number of glycolytic enzymes [112]. The

accumulation of HIF-1a in the absence of apparent hypoxic

stimulation has been demonstrated in a number of different

cancers, in contrast to benign tumors and normal tissue [6].

Thus, HIF-1a is important for conferring a growth and survival

advantage to tumor cells, particularly under conditions of

metabolic stress.
9. Inducible nitric oxide (NO) synthase (iNOS)
and inflammation

iNOS is one of three key enzymes generating nitric oxide (NO)

from the amino acid L-arginine [116]. iNOS gene expression

and subsequent mRNA translation is controlled by various

agonists, especially pro-inflammatory mediators. The most

prominent cytokines involved in iNOS stimulation are TNF-a,

IL-1b, and IFN-g [117]. The expression of iNOS is regulated by

transcription factors including NF-kB, activator protein 1,

signal transducer and activator of transcription, 1a interferon-

regulatory protein 1, nuclear factor interleukin-6, and high-

motility group I (Y) protein [118]. iNOS has been implicated in

different stages of cellular changes that lead to malignancy:

transformation of normal cells; growth of transformed cells;

angiogenesis triggered by angiogenic factors released from

tumor cells or from the surrounding tissue; and metastasis of

malignant cells [119]. In a variety of human malignant tumors,

e.g. breast, lung, prostate, bladder, colorectal cancer, and

malignant melanoma, expression of iNOS can be observed

[120]. Further studies are required to determine the role of the

NO/iNOS pathway in tumorigenesis and to establish the utility

of iNOS inhibitors as chemoprevention agents.
10. Role of oxidative stress in tumorigenesis

Reactive oxygen intermediates, also generically referred to as

oxidants, are derivatives of molecular oxygen such as super-

oxide, hydrogen peroxide, hypochlorous acid, singlet oxygen,

and the hydroxyl radical. Under normal circumstances,

phagocyte-derived oxidants serve a protective function by

killing invading bacteria and parasites. However, they can also

have detrimental effects, causing tissue damage and con-

tributing to the development or progression of numerous

diseases including cancer [121]. Chronic inflammation is

accompanied by increased production of tissue reactive
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oxygen and nitrogen intermediates. ROS can alter signal

transduction cascades as well as induce changes in transcrip-

tion factors such as NF-kB and AP-1 that mediate immediate

cellular stress responses [122]. The proneoplastic activity of

reactive oxygen species is mainly due to their ability to cause

DNA damage [123]. Proteins and lipids are also significant

targets for oxidative attack, and modification of these

molecules can increase the risk of mutagenesis [124]. Agents

that either scavenge reactive oxygen intermediates or prevent

their formation inhibit induction of DNA damage, mutagen-

esis, and transformation by inflammatory phagocytes. This

forms the basis for the theory that dietary antioxidants can

inhibit the development or progression of cancer [125].
11. Dual role of peroxisome proliferator-
activated receptor gamma (PPARg) in
inflammation and cancer

The orphan nuclear receptor, PPARg, is one of three of a family

of receptors (PPARa, b and g) [126]. It is expressed in numerous

cell types including adipocytes, epithelial cells of the breast,

colon, and lung, and macrophages among others [127]. A

growing body of evidence suggests that activated PPARg might

also possess anti-inflammatory and immunomodulatory

capacities [128]. Several anti-inflammatory mechanisms have

been suggested, including inhibition of NF-kB, AP1, and STAT

transcription factors by PPARg [129]. However, Chawla et al.

reported that PPARg is not essential to elicit the anti-

inflammatory effects that result from treatment with the

known PPAR agonists 15dPGJ 2or rosiglitazone [130]. PPARg

has also been implicated both as a tumor suppressor and

tumor promoter. It is expressed in many cancers, including

lung, breast, and prostate, and PPARg ligands are generally

antiproliferative in these settings [131]. However, Sarraf et al.

reported that PPARg contributes to suppression of colon

cancer [132]. The combination of receptor overexpression in

tumors and known physiological effects of its ligands on

cancer cells makes PPARg a viable target of future chemother-

apeutic agents.
12. NF-kB activation mediates tumorigenesis

TNF, interleukins, chemokines, COX-2, 5-LOX, and MMP-9 are

all regulated by the transcription factor NF-kB. Although this

factor is expressed in an inactive state in most cells, cancer

cells express an activated form of NF-kB. This activation is

induced by a wide variety of inflammatory stimuli and

carcinogens, and the gene products regulated by it mediate

tumorigenesis as indicated above [1,133]. Only few of the

recent evidences linking NF-kB and cancer will be reviewed

here.

12.1. Genetic evidence about the role of NF-kB in
tumorigenesis

NF-kB activity is triggered in response to infectious agents and

pro-inflammatory cytokines via the IkB kinase (IKK) complex.

Using a colitis-associated cancer model, it has been shown
that although deletion of IKKb in intestinal epithelial cells

does not decrease inflammation, it leads to a dramatic

decrease in tumor incidence without affecting tumor size

[134]. Pikarsky et al. reported that NF-kB constitutes an

important missing link between cancer and inflammation.

The Mdr2-knockout mouse strain, which spontaneously

develops cholestatic hepatitis followed by hepatocellular

carcinoma, serves as a prototype of inflammation-associated

cancer. It has been shown that the inflammatory process

triggers hepatocyte NF-kB through upregulation of TNFa in

adjacent endothelial and inflammatory cells. Suppressing NF-

kB inhibition through anti-TNFa treatment or induction of IkB-

super-repressor in later stages of tumor development resulted

in apoptosis of transformed hepatocytes and failure to

progress to hepatocellular carcinoma [49].

Mice lacking IKKb only in hepatocytes has been found to

exhibit a marked increase in hepatocarcinogenesis caused by

diethylnitrosamine (DEN) [135]. Decreased hepatocarcinogen-

esis was also found in mice lacking IKKb in both hepatocytes

and hematopoietic-derived Kuffer cells. These mice exhibited

reduced hepatocyte regeneration and diminished induction of

hepatomitogens, which were unaltered in mice lacking IKKb,

suggesting that IKKb provides an inflammatory crosstalk

between hepatocytes and hematopoietic-derived cells that

promote chemical hepatocarcinogenesis. Co-culture of

macrophages with ovarian or breast cancer cell lines led to

TNFa-dependent activation of JNK and NF-kB pathways in

tumor cells but not in benign immortalized epithelial cells

[136]. Tumor cells with increased JNK and NF-kB activity

exhibited enhanced invasiveness. Inhibition of the NF-kB

pathway by TNFa-neutralizing antibodies, an NF-kB inhibitor,

RNAi to RelA, or overexpression of IkB inhibited tumor cell

invasiveness. This suggests that TNF-a, via NF-kB and JNK,

induces macrophage migratory inhibitory factor (MIF) and

extracellular matrix metalloproteinase inducer CD147 (EMM-

PRIN) in macrophage to tumor cell co-cultures and leads to

increased invasive capacity of the tumor cells [120].

12.2. Activation of NF-kB by carcinogens

Cigarette smoke (CS) contains several carcinogens known to

initiate and promote tumorigenesis and metastasis [137].

Treatment of human histiocytic lymphoma cells with CS

activated NF-kB in a dose- and time-dependent manner. Thus

CS can activate NF-kB in a wide variety of cells, and this may

play a role in cigarette smoke-induced carcinogenesis. The

role of EBV latent infection in development of lymphoid and

epithelial malignancies such as nasopharyngeal carcinoma

(NPC) is mediated via NF-kB activation pathway. The EBV

latent membrane protein 1 (LMP1) acts as a constitutively

active tumor necrosis factor receptor and activates cellular

signaling pathways such as c-Jun-NH(2)-terminal kinase,

cdc42, Akt, and NF-kB. Activation of NF-kB p50 homodimer/

Bcl-3 complexes has been found in nasopharyngeal carcinoma

[138]. Constitutive activation of NF-kB in human melanoma

cells has been linked to activation of Akt kinase suggesting

that activation of Akt may be an early marker for tumor

progression in melanoma. The chemokines CXC ligand 1

(CXCL1) and CXCL8, but not CXCL5, are highly expressed in

most melanoma cell lines, suggesting that the constitutive
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production of chemokines is highly correlated to endogenous

NF-kB activity [139]. Dhawan’s group reported that constitu-

tive activation of Akt in melanoma leads to upregulation of NF-

kB and tumor progression [140].

Numerous studies have indicated that tumor cells exhibit

an elevation in constitutive production of the pro-inflamma-

tory cytokines TNF-a, IL-1a, IL-6, GM-CSF, and KC (the murine

homologue of chemokine Groa). The basis for constitutive

expression of these cytokines after tumor progression in vivo

is unknown. Regulation of the expression of these pro-

inflammatory cytokines involves transcription factor NF-kB,

which can be activated by cytokines such as TNF-a. The host

environment promotes the constitutive activation of NF-kB

and pro-inflammatory cytokine expression during metastatic

tumor progression of murine squamous cell carcinoma [141].

The gastric pathogen Helicobacter pylori is associated with

progression to gastric cancer. H. pylori induces plasminogen

activator inhibitor 2 in gastric epithelial cells via activation of

NF-kB and RhoA, which in turn mediates invasion and

apoptosis [142]. Suganuma et al. found that H. pylori

membrane protein 1 (HP-MP1) induces release of inflamma-

tory cytokines and TNFa, which acts as both initiator and

tumor promoter, and produced tumors in nude mice [143].

Helicobacter infection has been shown to induce inflamma-

tion and colon cancer in SMAD3-deficient mice [144]. Brandt

and coworkers showed that the H. pylori immunodominant

protein, CagA which causes gastritis and carcinoma induces

IL-8 in a dose and time dependent manner and this induction

occurs via a Ras! Raf!Mek! Erk! NF-kB signaling path-

way in a Shp-2- and c-Met-independent manner [145].

12.3. NF-kB as a growth factor for tumor cells

The role of NF-kB as a growth factor for tumor cells is well

documented. Ludwig’s group investigated the role of specific

point mutations of the ret proto-oncogene in multiple

endocrine neoplasia (MEN) types 2A and 2B, for familial

medullary thyroid carcinoma (MTC) syndromes, and for

sporadic MTC. They found that NF-kB is constitutively active

in C-cell carcinoma and is required for ret-induced transfor-

mation [146]. RET-induced NF-kB and IKKb activity requires

Ras function but involves neither the classical MAPK/ERK

pathway nor the PI-3K/Akt pathway. In contrast, RET-induced

NF-kB activity is dependent on Raf and MEKK1. Inhibition of

constitutive NF-kB activity results in cell death of TT cells and

blocks focus formation induced by oncogenic forms of RET in

NIH 3T3 cells. These results suggest that RET-mediated

carcinogenesis critically depends on IKK activity and subse-

quent NF-kB activation. Constitutive activation of NF-kB in

human cutaneous T cell lymphoma cells was mediated

through the autocrine production of TNF [24]. Constitutive

activation of NF-kB in human cutaneous T cell lymphoma cell

has been reported to mediate the proliferation of these cells

[147].

Breast cancer metastasis suppressor 1 (BRMS1) functions as

a metastasis-suppressor gene in breast cancer and melanoma

cell lines. BRMS1 inhibits gene expression by targeting NF-kB

[148]. Suppression of both constitutive and TNF-induced NF-

kB activation by BRMS1 may be due to inhibition of IkBa

phosphorylation and degradation. These results suggest that
at least one of the underlying mechanisms of BRMS1-

dependent suppression of tumor metastasis includes inhibi-

tion of NF-kB activity and subsequent suppression of uPA

expression in breast cancer and melanoma cells. The anti-

apoptotic response and enhanced cellular proliferation

observed in neoplastic cells on overexpression of metallothio-

nein (MT) is also mediated via NF-kB signaling pathway. MT

caused transactivation of NF-kB through a specific interaction

with the p50 subunit of NF-kB, thus mediating the antiapop-

totic effects of MT [149]. Lack of molecular targets in estrogen

receptor-negative (ER-negative) breast cancer is a major

therapeutic hurdle. Biswas et al. studied NF-kB activation in

human breast cancer specimens and its role in cell prolifera-

tion and apoptosis [150]. These findings substantiate the

hypothesis that certain breast cancer cells rely on NF-kB for

aberrant cell proliferation and simultaneously avoid apopto-

sis, thus implicating activated NF-kB as a therapeutic target for

distinctive subclasses of ER-negative breast cancers.

12.4. NF-kB suppression mediates chemosensitivity

Extensive research in the last few years suggests that NF-kB

activation mediates resistance to cytokines, chemotherapeu-

tic agents, and g-irradiation, whereas suppression of NF-kB

can sensitize tumor cells to these agents. For instance, it has

been found that inhibition of NF-kB activation confers

sensitivity to TNF-a by impairment of cell cycle progression

in six human malignant glioma cell lines [151]. p65 DN protein

was used to inhibit NF-kB activation. Similarly, expression of a

dominant-negative mutant IkBa in human head and neck

squamous cell carcinoma inhibits survival, pro-inflammatory

cytokine expression, and tumor growth in vivo [152]. Inhibitors

of NF-kB activation can block the neoplastic transformation

response. Both TNF and PMA activated NF-kB and induced cell

transformation, whereas NF-kB blockers suppressed the

transformation. These results suggest that NF-kB activation

may be required for transformation whether induced by TPA

or by TNF. Inhibition of NF-kB through adenoviral delivery of a

modified form of IkBa, a specific inhibitor of NF-kB, has been

reported to sensitize chemoresistant tumors to the apoptotic

potential of TNF-a and to the chemotherapeutic compound

CPT-11, resulting in tumor regression [153].

A central mediator of a wide host of target genes regulated

by the NF-kB has emerged as a molecular target in cancer-

associated bone destruction. Gordon and coworkers investi-

gated NF-kB-dependent mechanisms in breast cancer cells

that regulate tumor burden and osteolysis in bone [154]. They

stably transfected cells of the bone-seeking MDA-MB-231

breast cancer cell line with a DN-IkBa to block NF-kB. Blockade

of NF-kB signaling in MDA-MB-231 cells decreased in vitro cell

proliferation, expression of the pro-inflammatory, bone-

resorbing cytokine interleukin-6, and in vitro bone resorption

by tumor/osteoclast co-cultures while reciprocally upregulat-

ing production of the proapoptotic enzyme caspase-3. Dong

et al. used molecular profiling of transformed and metastatic

murine squamous carcinoma cells by differential display and

cDNA microarray, which found altered expression of multiple

genes related to growth, apoptosis, angiogenesis, and the NF-

kB signaling pathway [155]. Loercher’s group examined the

role of NF-kB in the cumulative changes in gene expression
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with transformation and progression of the murine SCC and

after switching off NF-kB by a DN-IkBa(M) by profiling with

cDNA microarray. They found that NF-kB directly or indirectly

modulated expression of programs of genes functionally

linked to proliferation, apoptosis, adhesion, and angiogenesis.

These results also provide evidence that NF-kB is an important

modulator of gene expression programs that contribute to the

malignant phenotype of SCC [156].

12.5. Role of NF-kB in tumor metastasis

Metastasis of cancer cells is a complex process involving

multiple steps, including invasion, angiogenesis, trafficking of

cancer cells through blood vessels, extravasations, organ-

specific homing, and growth. While MMP, UPA, and cytokines

play a major role in invasion and angiogenesis, chemokines

such as SDF-1a and their receptors such as CXCR4 are thought

to play a critical role in motility, homing, and proliferation of

cancer cells at specific metastatic sites. NF-kB signal blockade

resulted in the downregulation of prometastatic MMP-9, a

UPA, and heparanase and reciprocal upregulation of anti-

metastatic TIMP-1 and -2 and PAI 2 [157]. NF-kB promotes

breast cancer cell migration and metastasis by inducing the

expression of the chemokine receptor CXCR4 [158]. NF-kB

regulates the motility of breast cancer cells by directly

upregulating the expression of CXCR4. The cell surface

expression of CXCR4 and the SDF-1a-mediated migration

are enhanced in breast cancer cells isolated from mammary

fat pad xenografts compared with parental cells grown in

culture. A further increase in CXCR4 cell surface expression

and SDF-1a-mediated migration was observed with cancer

cells that metastasized to the lungs. Taken together, these

results implicate NF-kB in the migration and the organ-specific

homing of metastatic breast cancer cells. Huang et al. reported

that blockade of NF-kB signaling also inhibits angiogenesis

and tumorigenicity of human ovarian cancer cells by

suppressing expression of VEGF and IL-8 [159].

The transcription factors p53 and NF-kB have been

implicated in apoptosis induced by DNA-damaging agents,

but the relationship between these two factors at the

molecular level is largely unknown. Downregulation of NF-

kB is required for p53-dependent apoptosis in X-ray-irradiated

mouse lymphoma cells and thymocytes. Apoptosis-resistant

mutant sublines from a radiosensitive mouse lymphoma 3SB

cell line that undergoes p53-dependent apoptosis after X-ray

irradiation were isolated and analyzed for NF-kB activity. A

similar downregulation of NF-kB activity by X-rays was

observed in thymocytes derived from p53 wild-type and

heterozygous mice but not in thymocytes from p53 homo-

zygous knock-out mice. These results suggest that NF-kB

inactivation is p53 dependent and is required for X-ray-

induced apoptosis in thymic lymphoma cells and normal

thymocytes [160].

The molecular mechanisms responsible for the progres-

sion of malignant transformation in Barrett’s esophagus are

still poorly understood; however, the activation of NF-kB

represents the central event in the neoplastic progression

associated with Barrett’s esophagus The increased NF-kB

activity has been linked to increased IL-8 and COX-2 expres-

sion [161].
13. Inflammation is a double-edged sword

While most evidence presented above suggest that pro-

inflammatory cytokines and enzymes play a major role in

mediating tumorigenesis, there is evidence to suggest that

blockade of inflammatory pathways could prove to be

harmful. First, administration of TNF blockers to patients

with rheumatoid arthritis increases the risk for developing

lymphomas [162]. Second suppression or deletion of NF-kB has

been shown to promote carcinogenesis [163–167]. Third, NF-kB

activity is modulated by tumor suppressors such as p53 and

ARF [168,169]. Fourth, NF-kB destabilizes tumor suppressor

p53 [170]. Fifth, NF-kB subunits could induce the expression of

tumor suppressor genes such as p53 [171]. Lastly, NF-kB has

been shown to regulate the expression of Fas, Fas ligand, and

TRAIL [17,172,173], all of which play an important role in

innate immunity. These evidences suggest that while under

some conditions, inflammatory mediator promote tumorigen-

esis; their total suppression could have negative effects.
14. Conclusions

Overall this review provides evidence for a strong link between

chronic inflammation and cancer. Thus inflammatory bio-

markers as described here can be used to monitor the

progression of the disease. These biomarkers can also be

exploited to develop new anti-inflammatory drugs to prevent

and treat cancer. These drugs can also be used as adjuvant to

the currently available chemotherapy and radiotherapy,

which by themselves activate NF-kB and mediate resistance.

Numerous anti-inflammatory agents including those identi-

fied from natural sources have been shown to exhibit

chemopreventive activities [125,174], and thus can be used

not only for prevention but also for therapy of cancer. The lack

of toxicity associated with the natural agents combined with

their cost provides additional advantages.
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