
INTRODUCTION

TUMOR NECROSIS FACTOR (TNF) was the first cytokine discov-
ered to kill tumor cells by apoptosis (programmed cell

death). After the ligand binds to its receptor, this receptor–ligand
complex induces several different cellular responses, consisting
of cellular proliferation, differentiation, survival, apoptosis, and
activation of nuclear factor-�B (NF-�B) and mitogen-activated
protein kinases (MAPK) (3, 74). There are 19 ligands and 29 re-
ceptors that belong to the TNF superfamily (Table 1), including
TNF-� and TNF-� (also known as lymphotoxin, LT), fibroblast-
associated cell surface (Fas) ligand (FasL; also known as CD95L),
TNF-like weak inducer of apoptosis (TWEAK), TNF-related
apoptosis-inducing ligand (TRAIL), vascular endothelial cell-
growth inhibitor (VEGI), and death receptor 6 (DR6).

Most of the TNF receptor superfamily members inducing
apoptosis possess an intracellular death domain that recruits

several signaling proteins for the onset of apoptotic signaling
cascades via mitochondria-independent mechanisms, finally
leading to caspase (cysteinyl aspartic acid-protease) activa-
tion. Deletion of the death domain abolishes apoptosis (61,
62). It has been reported that TNF-�-mediated apoptosis can
be induced by multiple signals, such as phospholipases, ce-
ramide, p53, c-myc, protein kinases, serine proteases, caspases,
reactive oxygen intermediates (ROI), and cytochrome c re-
lease (97, 130). Today more and more evidence indicates that
an intensive cross talk exists between receptor-mediated and
non–receptor-mediated, and between mitochondria-dependent,
and mitochondria-independent, apoptotic pathways (109).

Members of the TNF superfamily are involved in a variety
of physiological and pathological processes, including chronic
heart failure, sepsis (117), arthritis (83), neovascularization,
tumorigenesis, allograft rejection, meningitis, cancer-induced
cachexia (9), and hepatocyte regeneration (2, 25).
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ABSTRACT

Tumor necrosis factor (TNF), fibroblast-associated cell surface (Fas) ligand, and TNF-related apoptosis-
inducing ligand (TRAIL), all members of the TNF superfamily, are arguably the most potent inducers of cell
death. These cytokines induce cell death through sequential recruitment by the death receptors TNFR1-
associated death domain protein (TRADD), Fas-associated death domain protein (FADD), FADD-like inter-
leukin-1�-converting enzyme (FLICE), and downstream caspases. Increasing evidence indicates that mito-
chondria play a critical role in cytokine receptor-mediated apoptosis. There is also now ample evidence that
apoptosis induced by TNF and its family members is mediated through the production of reactive oxygen in-
termediates (also known as reactive oxygen species). Here we review the evidence linking reactive oxygen in-
termediates to cytokine-induced cell death mediated by TNF-�/�, Fas, TRAIL, TNF-like weak inducer of
apoptosis (TWEAK), and vascular endothelial cell growth inhibitor (VEGI). Antioxid. Redox Signal. 7,
482–496.
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APOPTOSIS

Apoptosis (cell suicide/programmed cell death) is a nor-
mal and very important event in the life cycle of most cells in
the organism. It is characterized by morphological and struc-
tural features involving mitochondrial swelling, release of cy-
tochrome c, cytoplasmic membrane blebbing, chromatin con-
densation, caspase activation, DNA fragmentation, and cell
fragmentation (127). Mitochondria play a crucial regulatory
role early in the proceeding of apoptosis (44, 63). A com-
monly accepted marker of mitochondrial engagement during
apoptosis is the release of cytochrome c from the mitochon-
drial intermembrane space to the cytosol. Once released in the
cytosol, cytochrome c forms the “apoptosome” together with
apoptosis protease-activating factor-1 (Apaf-1) and caspase-
9. Apoptosome formation leads to the onset and irreversible
progress of apoptosis (130). Mitochondrial cytochrome c re-
lease has been shown to be directly regulated by caspase-8
activation. Caspase-8 and -3 cleave the proapoptotic B-cell
lymphoma 2 (Bcl-2) homology domain 3 (BH3)-interfering
domain death agonist protein (Bid), which belongs to the Bcl-
2 superfamily, and the cleavage product of Bid promotes
cytochrome c release from mitochondria (12) (Fig. 1).

Apoptosis is mediated by the proteolytic actions of the cys-
teine proteases (caspases) (23). Several reports have demon-
strated that members of the TNF superfamily are potent in-
ducers of caspase-mediated apoptosis in a variety of cells and
that apoptosis may be regulated by the activation of the ubiq-
uitous central transcription factor NF-�B (13). Activation of
NF-�B by TNF leads to a proliferative response, whereas when
NF-�B is inhibited, TNF induces caspase-dependent cell apop-
tosis (5, 13, 128). Many of the nonapoptotic effects of TNF-�,
such as up-regulation of proinflammatory genes, are regu-
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lated by activator protein-1 (AP-1) and NF-�B. In many cell
types such as cancer cells, NF-�B activation inhibits cell
apoptosis, but it depends on the cell type (11).

Recently, NF-�B has been found in the mitochondria, where
it regulates their mitochondrial mRNA expression in response
to cytokines (22). As TNF-� leads to activation of NF-�B, the
function of mitochondrial NF-�B remains unclear. NF-�B also
regulates the production of several proteins, such as the mito-
chondrial regulatory proteins Bcl-2, Bcl-xL, A1/Bfl-2, inhibitor
of apoptosis protein (IAP), and TNF receptor-associated fac-
tor (TRAF), which inhibit the caspase cascade and block cy-
tochrome c release from mitochondria (22, 24).

ROI

During endogenous metabolic reactions, aerobic cells pro-
duce ROI such as superoxide anion (O2

�), hydrogen peroxide
(H2O2), hydroxyl radical (OH•), and organic peroxides as nor-
mal products of the biological reduction of molecular oxygen
(32). The electron transfer to molecular oxygen occurs at the
level of the respiratory chain, and the electron transport chains
are located in membranes of the mitochondria, endoplasmic
reticulum, the nucleus, and the cell, but mitochondria are the
major source of cellular ROI (Fig. 2) (39, 41, 106). ROI regu-
late signal transduction in plant and animal cells (63), but an
intracellular excess ROI caused by oxidative stress leads to
cell death through lipid peroxidation, alteration of DNA, and
various proteins. In contrast, a low amount of ROI is involved
in the defense against microorganisms (108). The intracellular
damaging effects of ROI are controlled by a system of enzy-
matic [e.g., superoxide dismutase (SOD), glutathione peroxi-
dase (GSH-px), glutathione reductase, catalase] and nonen-

TABLE 1. EXPRESSION OF THE LIGANDS (TNF-�, TNF-�, CD95L, TWEAK, VEGI, TRAIL) OF THE

TNF SUPERFAMILY AND THEIR RECEPTORS

Ligand Cells Receptor Cells

TNF-� Macrophages TNFR1 Most normal and transformed cells
Natural killer cells TNFR2 Immune cells
T- and B-lymphocytes Endothelial cells

TNF-� Macrophages TNFR1 Immune cells
Natural killer cells TNFR2 Endothelial cells
T- and B-lymphocytes Most normal and transformed cells

Fas Activated thymocytes FasL Most normal and transformed cells
Splenocytes
Cells of testis

TRAIL T-lymphocytes DR4, DR5 Most normal and transformed cells
Dendritic cells DcR1, DcR2
Natural killer cells OPG

TWEAK Monocytes FN14 Endothelial cells
TWEAKR2 Smooth muscle cells

Immune cells
Synoviocytes
Fibroblasts

VEGI Endothelial cells DR3 Activated T-cells
DcR3 Endothelial cells
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FIG. 1. Apoptosis pathway induced by the members of the TNF superfamily. Members of the TNF receptor superfamily in-
teract with TRADD or FADD adaptor molecule and induce apoptosis through either caspase-8 activation or caspase-9 activation.

FIG. 2. Major sources of ROI in the cell.
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zymatic antioxidants [e.g., glutathione (GSH), vitamins C
and D], which eliminate prooxidants and scavenge free radi-
cals (113) (Fig. 3).

ROLE OF ROI IN CYTOKINE SIGNALING

A number of enzymes responsible for ROI synthesis have
been identified (26), and a variety of stimuli, including mito-
gens, cytokines, and toxins, are able to activate the intracellu-
lar ROI (45, 97, 120). Several reports show that ROI release
plays a role in TNF receptor-induced signaling and apoptosis
(Table 2) (8, 35). Indeed, high levels of ROI have been shown
in cells during apoptosis (119). Antioxidants inhibit apoptosis
(75, 123), and an intracellular increase in oxidants activates
apoptosis in cells (100). ROI production is an early feature of
apoptosis (8). However, higher concentrations of ROI induce
necrosis in cells (27, 55).

Small amounts of ROI function as intracellular messengers,
mediating survival effects by, for example, increasing antiapop-
totic factors (35). Taken together, oxidants and antioxidants
have an important function in cellular physiology, and a delicate
balance between them is needed for cellular homeostasis.

The exact TNF signal transduction pathways that activate
ROI synthesis and the exact role of ROI-mediated proapop-
totic and antiapoptotic signals are not fully known. Depend-
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ing on cell type, several antiapoptotic effects mediated by ROI
in response to TNF-superfamily ligands seem to involve NF-�B
activation (Figs. 1 and 4) (35). Activation of caspase-3 and -8
and serine proteases by ROI may contribute to apoptosis (35,
64, 71, 132). TNF-induced activation of NF-�B requires the
mitochondrial electron transport system, because the presence
of rotenone (the protein complex I inhibitor) blocks NF-�B
activation (106).

ROLE OF ROI IN CASPASE ACTIVATION

Caspases are a specialized family of proteases that execute
apoptosis by destroying structural and functional cell proteins.
The members of the caspase family contain a cysteine-rich
residue at the active site and cleave targeted proteins after as-
partic acid. They are synthesized as proenzymes and activated
by removal of their NH2-terminal prodomain. Caspase-8 and -10
are crucial proximal caspases in the caspase cascades. Caspases
play a role in death receptor-mediated apoptosis because these
caspases are recruited by Fas-associated death domain (FADD)
(1). Caspase-3 is an important downstream executioner cas-
pase that cleaves a wide variety of substrates important for
the onset of apoptosis, such as antiapoptotic proteins of the
Bcl-2 superfamily (Bcl-2, Bid), inhibitor of caspase-activated
deoxyribonuclease (ICAD), and NF-�B (10).

FIG. 3. Quenching of ROI by antioxidant enzymes, antioxidant proteins, and antioxidant chemicals. The intracellular
damaging effects of ROI are suppressed by a system of enzymatic and nonenzymatic antioxidants, which eliminate prooxidants
and scavenge free radicals. The antioxidant proteins Bcl-2 and Bcl-xL are known to suppress ROI production through inhibition
of the PTPC.
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During TNF-induced apoptosis, a number of intracellular
proteins are activated (97), in a pathway that is mediated by
ROI (Fig. 4). Reports have shown that ROI mediate both pro-
apoptotic and prosurvival signals (Fig. 4) (35). ROI-mediated
apoptosis has been shown in hepatocytes to be caspase-
dependent or -independent, depending on the particular in-
ducing ROI (64). Such ROI as H2O2 and superoxide were able
to activate upstream (caspase-2 and -8) and downstream (cas-
pase-3 and -7) caspases in hepatocytes (64). Furthermore, ROI
play an important role in the TNF-signaling pathway as an up-
stream target in TNF-induced apoptosis and caspase activa-
tion. However, overexpression of such antioxidant enzymes
as �-glutamylcysteine synthetase (�-GCS) and SOD inhibits
TNF-induced cytotoxicity and caspase activation (76, 77),
and various ROI quenchers block TNF-induced caspase acti-
vation (111) (Fig. 3).
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ROLE OF ROI IN 
CYTOCHROME C RELEASE

The production of ROI and oxidative stress conditions are in-
creased by a variety of stimuli, e.g., drugs, ionizing radiation, and
binding of cytokines to the cell-surface receptors (15). Several re-
ports have revealed that the mitochondrial electron transport sys-
tem and the redox potential of the cells play a key role in inducing
TNF cytotoxicity by the formation of ROI (Fig. 3) (30, 37, 60, 68,
82, 87, 91, 92, 105, 110). It has been reported that TNF-� changes
the redox potential of the cells (37, 92, 103) and that the altered
redox potential leads to activation of transcription factors such as
NF-�B to induce downstream gene expressions. This signaling
mechanism is inhibited by the antioxidant N-acetylcysteine (NAC)
and metal chelators (103, 104, 116) (Fig. 3).

TABLE 2. ROLE OF ROI IN TNF SUPERFAMILY-MEDIATED CELL APOPTOSIS

Ligands References

TNF-�
TNF-� potentiates ROI by activating p38 MAPK 31
TNF-� increases the production of ROI 121
TNF-�-induced necrosis by caspase-regulated ROI production 71
PAF-�-induced NF-�B mediated by ROI 21
Anethole inhibits TNF-�-induced ROI 16
ROI induces apoptosis 64
ROI-dependent NF-�B-mediated transcription of cytokines 86
Coronary smooth muscle cells are potential source of ROI 70
TNF-� causes hypertrophy in cardiac myocytes via ROI generation 84
TNF-� increased ROI release in macrophages 99
Combination of TNF-� and heat shock induced ROI expression and led to apoptosis 124
Mitochondrial ROI induction by TNF 40
TNF-� induces mitochondrial ROI and cytotoxicity 39
DNA damage induced by TNF-� mediated by ROI 110
Involvement of ROI in COX-2 expression by TNF-� 29
ROI mediate TNF-� gene expression 95

TNF-�
Role of ROI release in TNF-�-mediated apoptosis has not been investigated
TNF-�-induced cytotoxicity does not depend on ROI 94

Fas
Fas-induced apoptosis does not depend on ROI 59
Fas-induced apoptosis leads to ROI release, disruption of ��m 8
Fas-induced pathway of cell suicide 122
Fas-induced cell death is mediated by Ras-regulated O2

� synthesis 46
Mitochondrial transmembrane potential and ROI in Fas signaling 90
ROI and antiapoptotic factors 66
ROI is important in Fas-mediated apoptosis 4

TRAIL
No information is available about a possible cross talk between TRAIL and ROI
Mitochondrial amplification loop for TRAIL signaling 115
Loss of mitochondrial potential and cytochrome c release in response 58

TWEAK
Role of ROI release in TWEAK-mediated apoptosis has not been investigated
Caspase inhibition sensitizes for TWEAK-induced necrosis by ROI 85

VEGI/DR6
Interactions of ROI have not been investigated
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Mitochondria are the major source of cellular ROI involved
in TNF-�-induced apoptosis (39, 106). Treatment of cells with
TNF-� alters mitochondrial membrane permeability, inhibits
respiratory chain complex I, induces mitochondrial swelling
and clustering, and leads to cytochrome c release. Cyto-
chrome c activates caspases that kill the cell (17, 39, 89, 97,
106). Chandel et al. have reported that TRAF2 directs signal-
ing generated by TNF to the electron transport mechanism in
mitochondria and then to the production of ROI (17). How-
ever, the expression of manganese SOD, radical scavengers,
and inhibitors of the mitochondrial electron transport chain
protect the cells and provide evidence for the direct involve-
ment of ROI in TNF signaling and cytotoxicity (105, 106, 126).
The exact TNF signal transduction pathways activated by ROI
synthesis and the exact role of ROI-mediated proapoptotic
and antiapoptotic signals are not fully understood. The dis-
tinct role of ROI in the TNF signaling pathway that leads to
apoptosis is still not elucidated and is the topic of this review.

ROI AFFECTS MITOCHONDRIAL
MEMBRANE POTENTIAL

The mitochondrial membrane potential (��m) is depen-
dent on the electron transport chain transferring electrons
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from NADH to molecular oxygen and a proton transport me-
diated by the F0F1-ATPase complex (114). The energy stored
in the electrochemical gradient is used by F0F1-ATPase to
convert ADP to ATP during oxidative phosphorylation. There-
fore, ��m plays an important role for energy (ATP) produc-
tion, but also in cell signaling. Many proapoptotic stimuli
can affect the ��m, such as Fas, H2O2, p53, TNF, and stauro-
sporine (8, 47, 72, 96, 101). These agents cause an elevated
membrane potential and release of ROI. Elevation of ��m is
independent of activation of caspases and happens early dur-
ing apoptosis (8, 72). Hyperpolarization of the mitochondrial
inner membrane followed by increased ROI production could
be shown in activated T-cells of systemic lupus erythematosus
patients (36).

At the inner–outer membrane contact sites, mitochondrial
pores and megachannels can be formed in response to apop-
totic stimuli. This permeability transition pore complex (PTPC)
consists of different transporters, channels, and outer mem-
brane proteins. The PTPCs allow diffusion of low-molecular-
mass compounds such as cytochrome c and lead to disruption
of the mitochondrial membrane. Loss of membrane potential
appears to be a point of no return in the effector phase of
apoptosis (90). Inhibition of these dynamic multiprotein pore
complexes can prevent loss of ��m. PTPCs induce ROI re-
lease (79). Furthermore, a specific inhibitor of PTPCs pre-

FIG. 4. ROI mediates both pro- and antiapoptotic signaling. The proapoptotic effects of ROI are mediated through caspase
activation, and antiapoptotic effects are mediated via NF-�B activation.
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vents translocation of NF-�B (79). Mitochondrial permeabil-
ity transition that leads to alteration of the cellular redox state
seems to be a central coordinator of diverse ROI-dependent
signaling pathways and plays a pivotal role in the induction
phase of apoptosis (63).

Bcl-2 proteins were suggested to inhibit apoptosis by direct
regulation of the PTPC (79) (Fig. 3). Bcl-2 is anchored in the
mitochondrial outer membrane and colocalizes with the PTPC
at the contact sites between the inner and outer mitochondrial
membranes (63).

ROLE OF ROI IN NF-�B ACTIVATION

In the inactive state, NF-�B is present in the cytoplasm of
cells in a complex consisting of two subunits and an addi-
tional inhibitory subunit I�B�. Five different subunits exist,
i.e., c-Rel, RelA, RelB, p50/p105, and p52/p100, which can
form homo- or heterodimers in various combinations. During
activation, the inhibitory subunit I�B� is phosphorylated by
I�B kinase (IKK) and subsequently degraded. Once released,
subunits of activated NF-�B translocate to the nucleus to bind
to NF-�B recognition sites in the promotors of various genes,
thus regulating gene expression (109).

The NF-�B plays a controversial role in TNF superfamily-
induced signaling pathways (109). The TNF superfamily is a
potent inducer of NF-�B; once activated, NF-�B inhibits
TNF-stimulated apoptosis (7, 38). It regulates not only anti-
apoptotic signals, but also proapoptotic signaling by the regu-
lation of death receptors (1).

ROI have been strongly implicated in activation of NF-�B,
AP-1, c-Jun N-terminal kinase (JNK), mitogen-activated pro-
tein kinase kinase (MEK), and caspase activation in response
to cytokines such as interleukin-1� (IL-1�) and TNF-� (21,
70, 103, 111). ROI seem to be common mediators of the TNF
gene-regulatory signaling pathways (106). But the exact mech-
anism for ROI-induced NF-�B activation remains unclear
(86, 103). We do know that ROI mediate antiapoptotic events
via NF-�B activation leading to transcription of antiapoptotic
genes, including extracellular growth factor and IL-1 (34, 35,
69). In contrast to the known protective effect of NF-�B acti-
vation in TNF-�-induced hepatocyte apoptosis, NF-�B was
proved to promote hepatocellular death from ROI in these
cells (64).

Therefore, in the same cell type, NF-�B can promote or in-
hibit apoptosis depending on the apoptotic stimulus or ROI
species (64, 111). The mechanism by which NF-�B promotes
ROI-induced death is unknown. It has been reported that ROI
are able to activate either NF-�B or caspases in ROI-mediated
apoptosis (47, 55, 80). However, overexpression of the an-
tioxidant enzymes such as �-GCS can antagonize ROI and in-
hibit TNF-induced cytotoxicity and activation of caspases,
NF-�B, AP-1, JNK, and MEK (77). Others have shown that
some antioxidants, which inhibit NF-�B, can activate AP-1
(33, 102), demonstrating a common upstream pathway for
NF-�B and AP-1, but different downstream pathways. More-
over, TNF-induced activation of NF-�B requires the mito-
chondrial electron transport system, because the presence of
rotenone (the protein complex I of respiratory chain inhibitor)
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blocks NF-�B activation (106). In contrast, Higuchi et al. re-
ported that both ROI-independent and -dependent pathways
are possible for activation of NF-�B (56). Hayakawa et al. re-
cently presented evidence that ROI do not mediate NF-�B ac-
tivation (52). They showed that both NAC and pyrrolidine
dithiocarbamate (PDTC) inhibit NF-�B activation indepen-
dently of antioxidative function. NAC selectively blocked TNF-
induced signaling by lowering the affinity of receptor to TNF.
PDTC inhibited the I�B�-ubiquitin ligase activity in the cell-
free system where extracellular stimuli-regulated reactive oxy-
gen species production did not occur. Furthermore, they showed
that endogenous reactive oxygen species produced through
Rac/NADPH oxidase did not mediate NF-�B signaling, but
instead lowered the magnitude of its activation.

ROLE OF ROI IN EFFECTS MEDIATED BY
ANTIAPOPTOTIC PROTEINS

It has been proposed that ROI mediate both pro- and anti-
apoptotic signaling (Fig. 3) (36). As mentioned above, ROI
lead to activation of NF-�B (21, 70, 103). One group of target
genes regulated by NF-�B are members of the Bcl-2 super-
family, such as Bcl-2 and Bcl-xL (35). Members of the Bcl-2
family are known to affect the redox status of cells (78). Anti-
apoptotic proteins of the Bcl-2 family, such as Bcl-2, Bcl-2-
associated gene product-1 (BAG-1), and Bcl-xL, reside in the
outer mitochondrial membrane. The ratio between pro- and
antiapoptotic members of the Bcl-2 family has a major influ-
ence on the onset of apoptosis. This location is also the major
source for ROI release. The Bcl-2 proteins colocalize with
PTPC of mitochondria (63). Despite the close proximity of
ROI and Bcl-2 family members, a direct interaction between
them has not been shown at the moment. It has been demon-
strated that treatment of cells with oxidants leads to apoptosis
that can be inhibited by Bcl-2 overexpression (57, 65). Fur-
thermore, Bcl-xL suppresses TNF-mediated apoptosis and ac-
tivation of NF-�B, AP-1, and JNK (78). Therefore, Bcl-2
somehow seems to inhibit cell death via protection from ox-
idative stress, but the particular signaling pathway remains to
be elucidated (Fig. 4).

ROLE OF ROI IN TNF-�-
INDUCED APOPTOSIS

TNF-� interacts with TNF-� receptor 1 and 2 (TNFR1 and
TNFR2) and participates in a variety of cellular responses, in-
cluding antiviral activity, transcription factor activation, im-
mune response regulation, cytotoxicity, and apoptosis (Fig. 5).
Many of the proinflammatory or antiapoptotic effects of TNF-�
signaling are mediated by activation of NF-�B (35). Recently,
a direct effect of TNF-� signaling on the mitochondrial elec-
tron transport mechanism resulting in ROI release from mito-
chondria has been shown (17, 39). A number of reports have
shown that ROI is involved in TNF-induced signaling in dif-
ferent cell types (54, 106, 111, 112).

TNF-induced mitochondrial superoxide production leads
to cell cytotoxicity, and this effect could be inhibited by ROI

13863C19.pgs  1/28/05  2:25 PM  Page 488



scavengers, such as butylated hydroxyanisole (39, 111). A
potent antioxidant, glutathione inhibits TNF-induced apopto-
sis by blocking neutral sphingomyelinase in human breast
cancer cells, and an increase in glutathione levels leads to in-
hibition of the activation of NF-�B (30, 39, 68, 73, 82, 87,
103, 110, 116). A decrease in glutathione levels leads to acti-
vation of TNF-induced apoptosis (54, 87, 107). Furthermore,
a mitochondrial respiration inhibitor blocks TNF-induced cy-
totoxicity and differentiation (54). ROI serve as second mes-
sengers in cell signaling, and ROI scavengers can effectively
block TNF-induced cytotoxicity, underlining the crucial role
of ROI in cytotoxicity (39, 106). Formation of ROI was found
to lead to DNA damage after TNF treatment (110).

Some other reports have focused on ROI as a common up-
stream signaling target in TNF-�-induced apoptosis (35). On
the other hand, ROI have also been implicated in antiapop-
totic signaling in response to TNF-�. TNF-� induces activation
of NF-�B whose activation blocks TNF-induced apoptosis (35).
Furthermore, ROI were shown to mediate TNF-induced gene
transcription via NF-�B and AP-1 activation (35). Therefore,
ROI appear to play a role in both pro- and antiapoptotic sig-
naling in response to TNF-�. ROI are also implicated in the
induction of TNF-� mRNA in response to UVB radiation, thus
enhancing TNF-� signaling (95). Newman et al. found that
ROI formation in smooth coronary muscle cells was accom-

REDOX REGULATION OF APOPTOSIS BY TNF SUPERFAMILY 489

panied by release of TNF-� (86). Gossart et al. found that
ROI regulate TNF-� production in alveolar macrophages (42).
NF-�B mediates the transcription of both antiapoptotic and
proapoptotic genes (35). It has been shown that anethole, a
constituent of anise, camphor, and fennel, through suppression
of ROI generation inhibits NF-�B activation. Anethole sup-
pressed TNF-induced inflammatory effects mediated by AP-1,
JNK, and MEK and suppressed TNF-induced apoptosis (16),
emphasizing that activation of NF-�B by ROI also mediates
proapoptotic effects. It is not clear which effects disturb the
balance between pro- and antiapoptotic effects induced by ROI
via NF-�B (Fig. 4). The net effect may depend on cell type,
the microenvironment of cells such as culture conditions, and
other interacting factors.

ROLE OF ROI IN TNF-�-
INDUCED APOPTOSIS

TNF-� binds to TNFR1 and TNFR2, but TNFR2 lacks a
death domain (10). As a result, TNFR2 does not usually me-
diate apoptosis, but overexpression of TNFR2 leads to apop-
tosis (50). The apoptotic signaling pathway of TNFR2 is not
understood at the moment (10). Powell et al. found that TNF-
�-induced cytotoxicity could not be inhibited by the oxygen

FIG. 5. Members of the TNF superfamily induce apoptosis via receptor-dependent (type I) and mitochondria-dependent
(type II) pathways.
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radical scavenger gluthathione, and therefore concluded that
this cytotoxicity does not depend on oxygen radicals in human
ovarian and cervical carcinoma cells (94). The direct effect of
TNFR2 signaling on ROI release remains to be investigated.

ROLE OF ROI IN FAS-INDUCED
APOPTOSIS

The cell-surface receptor Fas (also known as DR2 or
CD95/Apo-1 receptor) contains a death domain that mediates
cell apoptosis via interaction with FADD. The Fas-FADD com-
plex associates further with caspase-8 [FADD-like IL-1�-
converting enzyme (FLICE)] and caspase-3 activation (1, 10).
An alternative mitochondria-mediated pathway has also been
described for Fas signaling, consisting of cleavage of Bid pro-
tein by caspase-8 (10).

ROI plays a crucial role in mediating Fas-dependent apop-
tosis (4, 122) because the Fas-induced apoptosis was com-
pletely abolished by antioxidants such as NAC and glutathione
(46, 122). The Fas receptor activates ras in response to ligand
binding, and activated ras leads to generation of ROI (46).
Furthermore, ras was shown to be activated via sphingomyel-
inases or ceramide in lymphocytes. Disruption of mitochon-
drial transmembrane potential (��m) and ROI release occurs
early in Fas-mediated apoptosis (8). The initial increase in
ROI is followed by elevation of ��m, externalization of phos-
phatidylserine, and later disruption of ��m, which together
mediate apoptosis. Cell death, externalization of phosphati-
dylserine, and disruption of ��m could be inhibited by cas-
pase inhibitors, suggesting that these events depend on caspase
activation. But elevated ROI and elevated ��m levels per-
sisted (8). Taken together, the balance between mitochondrial
ROI, reducing agents, and other factors regulates the suscepti-
bility to Fas-induced apoptosis. Protein phosphatase 2, for ex-
ample, has been shown to be an essential factor for survival
and growth of cells via regulation of intracellular ROI and an-
tiapoptotic factors in Fas-mediated apoptosis (66). There are
other reports, however, that show lack of requirements of ROI
in Fas-mediated apoptosis (59). The latter studies were based
on the use of antioxidants.

ROLE OF ROI IN TWEAK-
INDUCED APOPTOSIS

TWEAK is the ligand that binds to fibroblast growth fac-
tor inducible-14 receptor [FN14; also known as TWEAK re-
ceptor (TWEAKR)] and was initially described in 1997 (19).
TWEAK is a cell surface-associated type II transmembrane
protein of the TNF superfamily, but a smaller, biological ac-
tive form of TWEAK also exists that can be shed in the extra-
cellular milieu (125). TWEAK is implicated in apoptosis,
proliferation, migration, inflammation, and angiogenesis (93,
98). It has proinflammatory activity by up-regulating proteins
such as prostaglandin E2, matrix metalloproteinase-1, IL-6, cell
adhesion molecule (ICAM-1), and E-selectin, and induces se-
cretion of some chemokines such as IL-8 (20, 49). TWEAK
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signaling has been shown in monocytes, macrophages, smooth
muscle cells, fibroblasts, synoviocytes, and endothelial cells.
Recently, signaling by a second TWEAK (TWEAKR2) recep-
tor has been reported (93).

TWEAK binding to TWEAKR2 activates NF-�B, JNK,
and MEK signaling cascade, as is the case for FN14. In con-
trast to FN14, the MAPK activity was stronger when binding
to TWEAKR2 (93). Depending on cell type, TWEAK induces
multiple pathways of cell death, including caspase-dependent
apoptosis, cathepsin B-dependent necrosis, and endogenous
TNF-�-dependent cell death. These multiple death pathways
seem to be solely mediated by FN14 even though this recep-
tor lacks an intracellular death domain (85). Nakayama’s group
was able to show in FN14 transfectants that the pan-caspase
inhibitor sensitized the transfectants to TWEAK-induced death
by necrosis via ROI and cathepsin B-dependent pathways (85).
Therefore, one can suggest that some of these death path-
ways, e.g., by ROI and cathepsin B, are caspase-independent.
In contrast, TWEAK-induced apoptosis was associated with
caspase-8 and -3 activation (85). Furthermore, TWEAK has
been identified as an effective inducer of constitutive NF-�B
activation (98). Unlike other ligands of the TNF family, TWEAK
leads to prolonged NF-�B (8–24 h) activation. TWEAK-
induced NF-�B activation depends on the adaptor molecules
TRAF2 and TRAF5 (48, 98).

Upon TWEAK binding, the cytoplasmic tail of FN14 inter-
acts and associates with the adaptor molecules TRAF1, 2, 3,
and 5 for activation of the NF-�B signaling pathway (14, 48).
The question arises whether ROI play a role in TWEAK-induced
death signaling because it is known that ROI are downstream
products of TRAF-mediated signal transduction (17).

ROLE OF ROI IN TRAIL-
INDUCED APOPTOSIS

TRAIL is the ligand that binds to the death receptors DR4
and DR5, but also to the decoy receptors DcR1 and DcR2, as
well as osteoprotegrin (OPG) (1). Decoy receptors allow lig-
and binding without transducing a signal, thus regulating TNF
signaling. DcR1 and DcR2 lack an intracellular death domain
or contain a nonfunctional death domain. DR4 and DR5 lead
to apoptosis by activating TNFR1-associated death domain
protein (TRADD) followed by activation of caspase-8 and -3
(1). Caspase-8 can cleave proapoptotic Bid, and the cleaved
Bid leads to release of mitochondrial cytochrome c. TRAIL-
induced apoptosis is negatively regulated by several cellular
factors (1). NF-�B regulates TRAIL expression, and like all
members of the TNF superfamily, TRAIL is able to activate
NF-�B (1).

TRAIL is considered to induce apoptosis in a variety of
cancer cells, but not in normal cells, so it is under investiga-
tion as a potentially powerful cancer therapeutic (6, 58). The
susceptibility to TRAIL-mediated apoptosis depends further
on the differentiation state of cells. Blocking of the function
of NF-�B has been shown to lead to enhanced susceptibility
of cells for TRAIL-induced apoptosis (28). The apoptosis in
differentiating cells induced by TRAIL was suggested to be
independent from mitochondrial pathways (53). In combina-
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tion with chemotherapeutics, a synergistic effect on mito-
chondria (loss of mitochondrial potential, release of cyto-
chrome c) has been shown (58, 81). In contrast, Soderstrom et
al. described a mitochondrial amplification loop for TRAIL
signaling evident by mitochondrial depolarization and cyto-
chrome c release in response to TRAIL stimulation (115). The
mitochondrial effects of TRAIL could be inhibited by MAPK
signaling (115). Taken together, the evidence shows that TRAIL-
induced apoptosis depends on mitochondria-dependent and
-independent signaling pathways (118), but at the moment no
information is available about the role of ROI in TRAIL-
mediated apoptosis.

ROLE OF ROI IN 
VEGI-INDUCED APOPTOSIS

VEGI belongs to the TNF superfamily and binds to the
DR3 and DcR3 (10). It inhibits proliferation and neovascular-
ization by endothelial cells (131) and seems so far to be endo-
thelial cell-specific. VEGI leads to growth arrest and programmed
cell death in proliferating cells, but not in nonproliferating
cells as shown by caspase-3 activation and annexin V labeling
(129). The expression of VEGI is regulated by inflammatory
cytokines such as TNF-� (18).

DR3, the receptor for VEGI, interacts with TRADD and
forms a complex with caspase-8. VEGI mechanisms are simi-
lar to those of other members of the TNF superfamily such as
NF-�B (51). VEGI also activates JNK (51). Nothing is known
at present about the role of ROI in VEGI-induced apoptosis,
however.

ROLE OF ROI IN DR6-
INDUCED APOPTOSIS

DR6 is expressed in most human tissues. It contains a cy-
toplasmic death domain and four extracellular cysteine-rich
motifs. DR6 interacts with TRADD (10). TNF induces the ex-
pression of DR6 by activation of NF-�B (67). Ectopic expres-
sion of DR6 in mammalian cells has been shown to induce
apoptosis and to activate NF-�B and JNK (88). The ligand for
DR6 is unknown at the moment, as is the role of ROI in DR6-
induced apoptosis.

CONCLUSIONS

The regulatory role of mitochondria in apoptosis has been
underestimated for a long time. Formerly, two separate death
pathways had been hypothesized: death receptor-mediated
apoptosis and apoptosis induced by mitochondrial alterations.
But it has become more and more evident that separate path-
ways do not exist. In the last few years, several death recep-
tor-mediated pathways were proven to cross-talk intensively
with mitochondrial signaling pathways. Mitochondria play a
crucial regulating and enhancing role in death and other sig-
naling events.

REDOX REGULATION OF APOPTOSIS BY TNF SUPERFAMILY 491

The precise redox regulation of cells orchestrated by mito-
chondrial enzyme complexes contributes significantly to cell
survival. Alterations in the redox potential of cells can change
signaling leading to apoptosis. The balance between ROI and
antioxidants and between pro- and antiapoptotic factors com-
mits the cell to survival or apoptosis or necrosis. The converse
roles of ROI and NF-�B in cell-death and -survival signaling
depend on multiple interacting pathways that involve redox
regulation of mitochondria. Therefore, ROI seem to be not
only by-products of metabolic reactions of the organism, but
also important signaling messengers that represent a target
upstream of NF-�B activation. ROI may represent an early
and very common signaling target upstream of NF-�B activa-
tion at a cross-point of multiple interacting pathways. Much
work remains to be done to elucidate further its precise role
in the signaling cascades of TNF receptors.
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ABBREVIATIONS

AP-1, activator protein-1; Apaf-1, apoptosis protease-
activating factor-1; Bcl-2, B-cell lymphoma 2; Bid, BH3-
interacting domain death agonist; caspase, cysteinyl aspartic
acid-protease; DcR, decoy receptor; DR, death receptor;
FADD, Fas-associated death domain protein; Fas, fibroblast-
associated cell surface; FasL, Fas ligand; FLICE, FADD-like
interleukin-1�-converting enzyme; FN14, fibroblast growth
factor inducible-14 receptor; �-GCS, �-glutamylcysteine syn-
thetase; H2O2, hydrogen peroxide; IAP, inhibitor of apoptosis
protein; IL, interleukin; JNK, c-Jun N-terminal kinase; MAPK,
mitogen-activated protein kinase; MEK, mitogen-activated
protein kinase kinase; NAC, N-acetylcysteine; NF-�B, nuclear
factor-�B; OPG, osteoprotegerin; PDTC, pyrrolidine dithio-
carbamate; PTPC, permeability transition pore complex; ROI,
reactive oxygen intermediates; SOD, superoxide dismutase; TNF,
tumor necrosis factor; TNFR, TNF receptor; TRADD, TNFR1-
associated death domain protein; TRAF, TNF receptor-associated
factor; TRAIL, TNF-related apoptosis-inducing ligand; TWEAK,
TNF-like weak inducer of apoptosis; TWEAKR, TWEAK re-
ceptor; VEGI, vascular endothelial cell growth inhibitor; ��m,
mitochondrial membrane potential.
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